Classes of harmonic functions defined by extended Sălăgean operator

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator

In this paper we obtain coefficient characterization‎, ‎extreme points and‎ ‎distortion bounds for the classes of harmonic $p-$valent functions‎ ‎defined by certain modified operator‎. ‎Some of our results improve‎ ‎and generalize previously known results‎.

متن کامل

on a linear combination of classes of harmonic $p-$valent functions defined by certain modified operator

in this paper we obtain coefficient characterization‎, ‎extreme points and‎ ‎distortion bounds for the classes of harmonic $p-$valent functions‎ ‎defined by certain modified operator‎. ‎some of our results improve‎ ‎and generalize previously known results‎.

متن کامل

On certain classes of p - valent functions defined by Sălăgean operator

Let Ap be the class of analytic functions f which are of the form f(z) = z + ∞ ∑ m=p+1 am z , (p ∈ N = {1, 2, 3, ...}), defined in the open unit disk U = {z ∈ C : |z| < 1}. We introduce the class M(α, β, n, p) and also the subclass M?(α, β, n, p). The aim of the present paper is to derive some convolution properties for functions belonging to the class M?(α, β, n, p). 2010 Mathematics Subject C...

متن کامل

On Harmonic Functions Defined by Derivative Operator

A sufficient coefficient of this class is determined. It is shown that this coefficient bound is also necessary for the classM –– H n, λ, α if fn z h –– gn∈ MH n, λ, α , where h z z− ∑∞ k 2|ak|z, gn z −1 n ∑∞ k 1|bk|z and n ∈ N0. Coefficient conditions, such as distortion bounds, convolution conditions, convex combination, extreme points, and neighborhood for the class M –– H n, λ, α , are obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ukrains’kyi Matematychnyi Zhurnal

سال: 2021

ISSN: 1027-3190

DOI: 10.37863/umzh.v73i1.78